3-qubit phase flip code phase flip operator Z acts as $a|o\rangle + b|1\rangle \mapsto a|o\rangle - b|1\rangle$ with probability p>0 (state is unchanged with prob. I-P) -> work in qubit basis $|+\rangle \equiv (10\rangle + 11\rangle)/\sqrt{2}$, $|-\rangle \equiv (10\rangle - |1\rangle)/\sqrt{2}$ -> Z: |+> -> |-> \rightarrow use $|0_L\rangle \equiv |+++\rangle$ and $|1_L\rangle \equiv |---\rangle$ as logical zero and one -> perform all operations of error-correction just as for bit flip channel apply Hadamard gate to switch between It>, I-> and Io>, II> basi $|o\rangle \longrightarrow$ +HUse projectors $P_{j} = H^{\otimes 3} P_{j} \cdot H^{\otimes 3}$ for error defection

The Shor code
How to protect against "arbitrary" error?

$$\rightarrow$$
 shor code
 $\frac{steps:}{1) encode qubit using phase flip code}{10> \rightarrow 1+++>, 11> \rightarrow 1--->}$
2) encode each of the 3 qubits using
3-qubit bit flip code
 $1+ + +> 1- -->$
 $\frac{100>+111>}{12} \frac{1000>+111>}{12} \frac{1000>+111>}{12} \frac{1000>+111>}{12}$
 $10> \rightarrow 10L> = (1000>+111>)(1000>+111>)(1000>+111>))(1000>+111>)(1000>+111>))(1000>+111>)(1000>+111>))(1000>+111>))(1000>+111>))(1000>-11>))(1000>-11>))(1000>-11>))(1000>-110>)(100>-11>))(100>-11>))(100>-11>))(100>-11>)(10>-11>-11>)(10>-11>)(10>-11>)(10>-11>)(10>-11>)(10>$

Shor code is able to protect against
phase flip and bit flip errors:
1) suppose a bit flip occurs on first qubit

$$\rightarrow$$
 perform 7, 7, 2 measurement
 \rightarrow produces sign change
so either q, or q, has been flipped
 \rightarrow measure 2, 2,
 \rightarrow no sign change
so q, was flipped
 \rightarrow recover from error by flipping
first qubit again
2) Suppose a phase flip occurs on first qubit
effect: 1000>+111> \rightarrow 1000>-111>
on first block
 \rightarrow measure sign in first two blocks
and last two blocks
 \rightarrow overall sign flip in first case,
 no sign flip in second
 \rightarrow restore by flipping sign in the
first block of 3 qubits

Stabilizer Codes
The code space of a stabilizer QEC code is
defined by a stabilizer group
$$S = \langle \{S_i\} \rangle$$
.
 \rightarrow mutually independent logical operators
 $\{L_{j}^{2}\}^{2}$
 \rightarrow computational basis state determined
by $\langle \{S_i\}, \{(-1)^{m_j}L_{j}^{2}\} \rangle$
 \rightarrow find logical operators $\{L_{j}^{\times}\}$ subject to
 $L_{j}^{\times}L_{i}^{2} = (-1)^{S_{1j}}L_{i}^{\mathbb{Z}}L_{j}^{\times}$
 $\rightarrow \{L_{i}^{\mathbb{Z}}, L_{i}^{\times}\}$ represents ith logical qubit
Brample: Shor code

$$\chi_{L} = \chi_{00}^{000}$$

Proof:
Zet P be the projector onto the code
space ((s). For given j and K there
are two possibilities: either Et; Ex in S
or Et; Ex in Gn-N(s). Consider the first
case. Then PEt ExP = P.
Suppose Et; ExeGn-N(s)

$$\longrightarrow E_{1}^{+} E_{K} = G_{N} - N(s)$$

 $\longrightarrow E_{1}^{+} E_{K} = anticementex with
some element g, e S
Zet g1,..., gn-k be a set of generators of S
s.th. $P = \frac{dT}{dE_{1}} (I+g_{e})$
 2^{M-K}
 $\implies E_{1}^{+} E_{K} P = (I-g_{1}) E_{1}^{+} E_{K} \prod_{n=2}^{N-K} \frac{(I+g_{e})}{2^{M-K}}$
But $P(I-g_{1})=0$ since $(I+g_{1})(I-g_{1})=0$
 $\implies P E_{2}^{+} E_{K} P = 0$
interpretation:
Suppose g1,..., gn-k is a set of generators
for the stabilizer of an [n_{1}K] stabilizer code.$